Steroids and Steroidases. 10.¹ Studies on Some Potentially Antitumor Active Androstane Compounds Containing C-17 Nitrogen Mustard Functions

J. BRYAN JONES,* DAVID J. ADAM, AND JEFFREY D. LEMAN²

Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto 181, Ontario, Canada

Received October 10, 1970

Various approaches to 17 α - and 17 β -N(CH₂CH₂CH₂CH₂) androstane compounds have been evaluated and of the routes explored, those involving N(CH₂CH₂OH)₂ derivatives proved the most reliable. Using androstanes with no functionality other than the mustard moiety, and also the more sensitive compounds containing oxygen and/or ethylenic groups in ring A, a detailed evaluation of the merits and disadvantages of a range of reagents and procedures for effecting the final, critical, chlorination reaction has been made. The data obtained are considered to be relevant to nonaromatic mustards in general and thus provide a guide for the selection of the most appropriate chlorinating conditions for variously functionalized steroidal and aliphatic mustards. An analysis of the factors to be considered in designing antitumor active steroid mustards has been carried out. No cytotoxic activity was detected when representative mustards were tested against DMBA-induced mammary tumors in Sprague-Dawley rats.

During the past decade or so a significant effort has been expended by several research groups in attempts to find steroidal N mustard derivatives which possessed clinically useful antitumor properties. The justifications for expecting the steroid-mustard combination to be a fruitful one were multiple³ and they included the expectation that a lipophilic steroid carrier molecule would aid transport of the mustard moiety and that the use of hormonally active steroids for this purpose might direct the mustard to specific target tissues. Even though the observation that treatment of breast cancer with testosterone and the thiophosphoethylenimine mustard, Thiotepa, administered together was more effective than when either compound was used alone⁴ had provided an important stimulus to the search for antitumor steroid hormone-mustard combinations, at the time we began this study (1966) very few examples had been reported^{5,6} in which the biologically important C-3 0 functions of the hormone had not been modified or eliminated.⁷ Accordingly, since the antitumor activities observed for the majority of the C-3 modified steroidal N mustards which had been evaluated up to that time had proved somewhat disappointing we decided to investigate androgen-N mustard combinations in which the C-3 0 function was maintained as a CO or OH group.

The C-17 epimers of the testosterone-related mustards 1 and 2 were selected as the initial synthetic targets. Mustard derivatives in which the amino N is bonded directly to the steroid nucleus have been prepared by several routes.^{3,12} However, comparisons of

(1) For part 9, see J. B. Jones and D. C. Wigfield, *Can. J. Chem.,* 47, 4459(1969).

(2) Abstracted mainly from the Ph.D. thesis of J.D.L., University of Toronto, Toronto, Ontario, 1969. First presented in part at the C.I.C. Conferences, Montreal, May 1969, and Toronto, May 1970.

(3) W. C. J. Ross, "Biological Alkylating Agents," Butterworths and Co., Ltd., London, 1962.

(4) G. W. Watson and R. L. Turner, *Brit. Med. J.,* 1315 (1959).

(5) S. H. Bursteinand H. J. Ringold, *J. Org. Chem.,* 26, 3084 (1961).

(6) E. Cioranesan and D. Raileanu, *Acad. Rep. Pop. Rom., Stud. Cercet. Chim.* 10, 295 (1962); *Chem. Abstr.,* 59, 4439 (1963).

(7) Several further examples have subsequently been reported.⁸⁻¹¹

(8) I. N-Duvaz, A. Carmbanis, and E. Tarnauceanu, *J. Med. Chem.,* 10, 172 (1967).

(9) H. Zimel, *Proc. 5th Int. Congr. Chemother.,* 247 (1967).

(10) E. L.Foster and R. T. Blickenstaff,./. *Med. Chem.,* 11, 1106 (1968).

(11) M. E. Wall, G. S. Abernathy, F. I. Carroll, and P. J. Taylor, *J. Med. Chem.,* 12, 810 (1969).

(12) For a complete review of steroidal N mustards including synth methods, and their activities see ref 2. A selective, but representative,

the experimental data reported showed that many of the synthetic steps were plagued by low yields and by other problems and that for those syntheses involving $N(CH_2CH_2OH)_2$ intermediates the final chlorination stage appeared to be a particularly sensitive one. In addition, preliminary investigations on oxygenated and unsaturated steroid derivatives¹³ had indicated that chlorination of the diol precursors of 1 and 2 would be further complicated by the presence of the Δ^4 -3-keto system. In view of this rather discouraging picture it was decided to carry out model investigations on the androstane mustards 3 and 4, for which no interfering functionalities were present in the steroid, in order to evaluate the best methods for the introduction of the C-17 mustard functions desired and in order to delineate the optimum chlorination conditions in the final step of those routes involving $N(CH_2CH_2OH)_2$ intermediates.¹⁴

The synthetic schemes followed are outlined in Scheme I. Conversion of 5α -androstan-17 β -olt (5) to 17β -amino-5 α -androstane (8) *via* the intermediate ketone 6 and oxime 7¹⁶ followed by reaction with ethylene

(14) Although 3 and 4 were not expected to exhibit appreciable antineoplastic activities, the possibility of their doing so was finite since the carrier moiety, 5a-androstane, is weakly androgenic.¹⁵

t The systematic nomenclature used throughout **is based** on the IUPAC recommendations for steroids.

(16) *Cf.* G. R. Pettit, R. L, Smith, A. K. D. Gupta, and J. L. Accolowitz, *Can. J. Chem.,* 46, 501 (1967), and ref therein.

summary of most of the important data and leading references is contd in ref 11.

⁽¹³⁾ J. B. Jones, D. J. Adam, J. E. Hawkins, J. D. Leman, and G. C. Niece, unpublished results.

⁽¹⁵⁾ R. I. Dorfman, W. H. Rooks, J. B. Jones, and J. D. Leman, *J. Med. Chem.,* 9, 930 (1966); A. Segaloff and R. B. Gabbard, *Endocrinology,* 71, 949 (1962).

oxide^{3,1}, gave 17β-bis(2-hydroxyethyl) amino-5α-androstane (9) in 60% overall yield. In the 17α series, the preparation of the $N(CH_2OH_2OH)$, derivative 13 from *5 via* the tosylate 10, the azide 11, and the amine 12¹⁸ proceeded equally smoothly in 41% overall yield.¹⁹

black tar resulted²¹ even at room temp. However, using carefully purified (with triphenyl phosphite²²) The most widely used chlorinating agent for the conversion of hydroxyethylamines to the corresponding mustards has been SOCl₂.^{3,12} Disappointingly, when the 17β compound 9 was treated with reagent grade $S OCl₂$ in CHCl₃ in a standard way¹⁷ an unidentifiable $S OCl₂$ in anhy EtOH-free CHCl₃ at 50 $^{\circ}$ no discoloration occurred and the 17 β -mustard 3 was obtained in 50% yield. Treatment of the 17α -precursor 13 with the same reagent afforded 17α -bis(2-chloroethyl)amino-5 α androstane (4) in 48% yield in an equally facile reac-

(17) *Cf.* G. V. Rao and C. C. Price, *J. Org. Chem.,* 27, 205 (1962), and ref therein.

(18) *Cf.* M. Davis, E. W. Parnel], and J. Rosenbauni, *J- Chem. Soc C,* 1045 (1967), and ref therein.

(19) The C-17 stereochemistries assigned to the amino derivatives 8, 9, 12, and 13 and to the azide 11 are implicit from their mode of synthesis and for ail other 17-amino derivatives described in this paper, the reactions used in the prepn of the compds allow the C-17 configuration to be predicted with equal confidence. However, in all such cases the assigned geometry was confirmed by examination of the C-17 proton peak in the pmr spectra. For most of the 17 β -amino derivatives the C-17 α hydrogen peak appeared as a triplet (sometimes poorly defined) whereas the C-17 β proton of the epimeric series was an apparent doublet.²⁰

(20) A, A. Patchett, F. Hoffman, F. F. Giarusso, II. Schwan, and G. E. Arth, *J. Org. Chem.* 27, 3822 (1962).

(21) This situation is not without its precedents in the aliphatic N mustard literature.^{3.12}

(22) I.. Friedman and W. P. Wetter, /, *Chem. Soc. A,* 36 (1967).

tion²³ both mustards being isolated initially as their HC1 salts.

Since the lowest yield step in both the 178 and 17 α series was the final one, other chlorinating agents were surveyed in an attempt to improve the yield of this critical stage. Triphenylphosphine, and phosphorus trisdimethylamide (both in CCI_i),²⁵ and AlCI₃²⁶ were investigated but were not successful in effecting the conversion of 9 into 3. In contrast, chlorinations of 9 and 13 with neat, freshly distilled POCl₃ proved to be quite satisfactory. Although the yields $(50-55%)$ obtained of the mustard derivatives do not represent an appreciable improvement over those of the $S OCl₂$ reactions, POCI3 is much the preferred reagent for the preparation of 3 and 4 since it obviates the necessity for rigorous purification of chlorinating agent and solvent. In addition the reaction mixtures are more stable and do not discolor even when heated at 100° for 1 hr, and isolation and purification of the mustards are much simpler than for the SOCl₂ reactions.

Owing to the multiplicity of steps involved in the reaction schemes of Scheme I the overall yields of the 17 β - and 17 α -mustards (\sim 33 and \sim 22 $\%$, respectively) from the starting alcohol 5 were not as high as could be wished. Accordingly, attention was turned to the development or application of other routes to 3 and 4 in which the number of synthetic steps required was reduced to a minimum. The first, and most direct, method considered is outlined in Scheme II. Conden-

sation of morpholine with the 17-keto function of 6 under Leuckart-Wallach conditions to give the 17β derivative 14 was expected to be facile¹⁸ and in view of the report²⁷ on the cleavage of some aromatic morpho-

(23) Comparisons of the mass and pmr spectra of the mustards 3 and 4 with those of their precursor diols 9 and 13 proved particularly valuable during these chlorination studies. In addn to the distinguishing C-17 proton peaks¹⁹ the resonances of CH₂ adjacent to N and O, respectively, were also characteristic and usually appeared as structured "triplets". For the $CH₃$ of 3 and 4 the chemical shift differences between the 2 "triplets" was significantly less than for those in the spectra of their preceding bis(hydroxyethyl)amines. This decrease in triplet separation on formation of the mustard proved to be a general and sensitive criterion and it was subsequently used to diagnose the presence and concn of mustards in the often very crude mixts obtd from the many reactions carried out during the delineation of optimum chlorination condns and in surveying the efficacy of various chlorinating agents. The SBC1:³⁷C1 dependant patterns in the parent ion region of the mass spectra were also quant characteristic and were used extensively as a reliable indicator of the presence of the bis(2-chloroethyl)amino function. For example, for 3 the mass spectrum showed parent ions at m/e 399 (C₂₃rot example, for a the mass spectrum showed patent fons at m/e 500 (OM-
H_e N3SCb), 401 (Collie N3SCB7Cl), and 403 (Collie N37Cb). Furthermore the ratio of the intensities of the signals (57:38:7) is in good agreement with the theor ratio (57:37:6) for a natural abundance 2 CI system.²⁴

(24) J. H. Beynon, "Mass Spectrometry and Its Applications to Organic Chemistry," Elsevier and Co., Amsterdam, 1960, pp 294-300.

(25) I. M. Downie, J. B. Holmes, and J. B, Lee, *Ckem.lnd. (London),* 900 (1966); J. B. Lee, *J. Amer. Chem. Soc,* 88, 3440 (1966); I. M. Downie, J. B. Lee, and M. F. S. Matough, *Chem. Commun.,* 1350 (1968).

(26) J. Broome, B. R. Brown, and G. H. R. Summers, *J. Chem. Soc,* 2071 (1957),

(27) E. Cerkovnikov and P. Stern, *Ark. Kemi.,* 18, 12 (1946); *Chem. Ab.itr.,* 42, 1938 (1946).

lines with HBr to give $N(CH_2CH_2Br)_2$ derivatives we were hopeful that similar chlorinative cleavage of the ether function of 14 might be possible.

When 5α -androstan-17-one (6) was treated with morpholine and $HCO₂H$, the 17 β -morpholino androstane 14 was obtained as the sole product in 65% yield. Very few data are available on methods for cleaving the ether linkage of morpholine rings and the strongly acidic²⁷ and oxidative²⁸ methods known to be effective were considered too vigorous to be applicable to the synthesis of sensitive mustards such as 1. Of the potentially useful methods which have been used for ether cleavage²⁹ triphenylphosphine dihalides appeared to be the most attractive of the mild reagents but, disappointingly, treatment of 14 with the dichloride or dibromide under a variety of conditions³⁰ was completely unsuccessful as a mustard forming process and no identifiable products, other than triphenylphosphine oxide, were isolated.³¹

At this stage in the investigation, Duranleau³³ reported that although acidic or oxidative cleavages of morpholine rings were satisfactory for introducing the mustard function into aromatic compounds the methods were not applicable to the corresponding aliphatic systems. In view of this further evidence of the instability of aliphatic morpholines and of the problems anticipated with the remaining mild ether cleavage possibilities²⁹ as a result of interference by the basic and nucleophilic morpholino N, further studies on this approach to mustards were postponed.

Several attempts were also made to improve the routes to the bis(hydroxyethyl)amines 9 and 13. The facile synthesis of 14 under Leuckart-Wallach conditions suggested that a similar reductive animation of $\bar{\partial} \alpha$ -androstan-17-one (6) with diethanolamine and HC02H might produce 9 in a l-step process. However, even under sealed tube conditions at 225° for 2 days a trace (tic) only of the required amine was produced. The preparation of the 17α epimer 13 by displacement of the 17β -tosyl group^{17,34} of 10 with diethanolamine was also attempted, but again only a trace of the desired product was produced.³⁵ Direct conversions of the 17 β -tosylate 10 to the mustard 4, and by reductive animation of the ketone 6 to 3 utilizing HN- (CH_2CH_2Cl) ₂ itself, were not investigated because of $\frac{1}{2}$ the marked instability of the latter compound³⁶ at the elevated reaction temps which would have been required.

(28) H. B. Henbest and A. Thomas, *J. Chem. Soc,* 3032 (1957).

(29) L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," Vol. 1, Wiley, New York, N. Y., 1967; Vol. 2, 1969; It. Burwell, *Chem. Rev.,* 54, 615 (1954).

(30) A. G. Anderson and F. J. Freener, *J. Amer. Chem. Soc,* 86, 5037 (1964)

(31) Many nucleophiles, including primary amines, effect displacement of halide from such pentavalent P compds³² and it was suggested that the morpholine N was interfering with the desired reaction by such a process.

(32) A. J. Kirby and S. G. Warren, "The Organic Chemistry of Phosphorus," Elsevier & Co., London, 1967, pp 250-273.

(33) R. G. Duranleau, Ph.D. thesis, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, 1967.

(34) G. C. Hazen, Ph.D. thesis, University of Michigan, Ann Arbor, Michigan 48104, 1951.

(35) Although the negative result was disappointing in view of the success achieved earlier with the related azide reaction (Scheme I) and with other amines¹⁸ it was not entirely unexpected since the basicity and nucleophilicity of the amine is known to be critical.¹⁸

(36) G. R. Pettit and J. A. Settepani, *J. Org. Chem.,* 27, 2962 (1962), and ref therein.

Since of all the approaches to the mustards 3 and 4, only those outlined in Scheme I had been successful, the same reaction schemes were applied toward the synthesis of the Δ^4 -3-keto mustards 1 and 2 as summarized in Scheme III. In the 17 β series, the N(CH₂CH₂OH)₂

intermediates 16 and 17 were obtained from the ketal 15 in 23 and 18% overall yields, respectively, and the 17α epimers 18 and 19 in 13 and 7%, respectively.³⁷

The initial attempts to prepare the X mustards from both the ketalized and A⁴ -3-keto bis(2-hydroxyethyl) amino compounds 16-19 were extremely discouraging. Most of the chlorination survey reactions were carried out on the 17β compounds 16 and 17 and when these were treated with $S OCl₂$ either neat or in CHCl₃ or C_6H_6 solution no identifiable products could be isolated from the black reaction mixtures under conditions that had proven quite satisfactory for the preparation of the model androstane mustards 3 and 4. It was suspected that HC1 produced during the reaction was responsible for the problems encountered but rapid discoloration of the reaction mixtures occurred even when pyridine, $NaHCO₃$, and pinene³⁴ were added to remove the acid $\frac{1}{2}$ in situ. PCI³ was also ineffective as a chlorinating agent,

POCI3, the most satisfactory chlorinating agent for the preparation of the androstane mustards 3 and 4, did not prove as successful a reagent when applied to the preparation of the C-3 oxygenated and unsaturated mustards 1 and 2. A broad spectrum of conditions was surveyed during attempts to convert 16 and 17 to the corresponding mustards but with the ketal 16 only intractable gums were obtained. However, when the A 4 -3-keto diol 17 was heated with POCl3 under reflux, very little color developed in the reaction mixture and the product exhibited the characteristic mustard trip-

⁽³⁷⁾ These relatively low overall yields emphasize the disadvantages inherent in the multiplicity of steps required to elaborate the mustard function by the routes of Schemes I and III. The yields of each individual step were in fact very good $(>75\%)$ in most reactions and seldom fell below 60% even for the most unfavorable stages.

lets²³ at δ 2.98 and 3.51 ppm in the pmr spectrum. However, that the mustard was not the hoped for A 4 -3-ketone 1 was demonstrated by the absence of CO ir absorption. The characteristic Δ^4 -3-keto C-4 olefinic resonance at δ 5.78 ppm had also disappeared from the pmr spectrum and instead, 2 new 1-proton vinylic peaks were visible at δ 5.38 and 6.06 ppm. These data, coupled with the structured uv absorption maximum at 242 nm, which is characteristic of $\Delta^{3,4}$ -3-chlorosteroids,³⁸ indicated the product to be the 3-chloro-3,5 diene mustard 20.³⁹

Successful chlorinations of the epimeric diols 17 and 19 to give the elusive androst-4-en-3-one mustards 1 and 2, respectively, were finally accomplished with MsCl in pyridine.⁴¹ The reactions were not as clean as might have been desired and pic of the black reaction mixtures was necessary before 1 and 2 were obtained in 25% and 21% yields from their respective MsCl reactions.

During the early stages of this work we had been fortunate to have a quantity of 17β -amino- 5α -androstan-3-ol (21) in hand from a previous, but unrelated, investigation and advantage had been taken of the availability of this material to work out optimum conditions for the C-17 amine alkylations with ethylene oxide reactions applied subsequently to 8 and 12, and to their 3,3'-ethylenedioxy-5-ene analogs of Scheme III. From this model study the bis(2-hydroxyethyl)amine 22 had been obtained in 70% yields (Scheme IV) and since it

was available in reasonable quantity its conversion to a mustard was explored even though it was appreciated that selective formation of the $N(CH_2CH_2Cl)_2$ group, without concomitant chlorination of the C-3 OH, was unlikely to be achieved.

Chlorination of 22 with purified SOC_{12} in pure CHCl_3 was achieved fairly readily, but not selectively, to give the trichloro mustard 23 in low (25%) yield. As the reaction had been carried out in nonbasic solution the introduction of the C-3 CI was assumed initially to have proceeded with retention of the β configuration.⁴² However, examination of the pmr spectrum indicated that inversion at C-3 during chlorination had in fact occurred to give the 3α derivative as shown in structure 23.⁴³ This conclusion was based on the welldocumented⁴⁴ characteristic differences between C-3 axial and equatorial proton resonances of such compounds. In the spectrum of the trichloro mustard obtained the C-3 proton appeared as a narrow, but only poorly defined, triplet centered at δ 4.48 ppm which was identical in pattern and chemical shift with that of the 3 β proton of 3 α -chloro-5 α -androstan-17-one.¹³ In contrast, the 3α -H of 3β -chloro- 5α -androstan-17-one was observed as a broad septet centered at *8* 3.84 ppm when the spectrum was recorded under identical conditions.¹³

Treatment of the triol 22 with the more preferred reagent POCl₃ effected mustard formation smoothly and in good yield. However, somewhat unexpectedly, elimination occurred during the reaction, and the product isolated was 17β -(2-chloroethylamino)-5 α -androst-2-ene (24). The presence of the olefinic bond was indicated by the spectroscopic data and the possibility that the product was the isomer with the double bond in the less stable Δ^3 position, or was a mixture of ring A olefins, was eliminated by comparing the olefinic regions of its pmr and ir spectrum with those of a sample of 5α androst-2-en-17-one obtained in connection with other studies.

Whereas dehydration of steroidal tertiary alcohols with POCl₃ is well established⁴⁵ basic solvents are generally employed and trans-diaxial eliminations are favored. The latter stereochemical requirement is not satisfied by the 3β -OH group nor by the intermediate phosphate ester presumed to be formed initially with retention of configuration. However, precedents do exist for eliminations involving equatorial phosphate groups⁴⁶ and, furthermore, the possibility of formation of the 3α -chloride (through participation of the C-17- $NH₂$ group as suggested in the SOCl₂ reaction⁴³) followed by dehydrochlorination cannot be discounted.

Review of Chlorination Procedures.—The synthetic studies have shown that approaches involving $NCH₂$ - $CH₂OH₂$ derivatives provide the most reliable general routes to steroidal N mustards where bonding of the mustard *via* a C-X bond is required. The data accumulated have also shown the final chlorination step to be the most critical one. In view of the difficulties which have been encountered with this reaction in these and previous studies a summary of our conclusions regarding the merits and disadvantages of the

(44) N. S. Bhacca and D. IT. Williams, "Applications of XMR Spectros-copy in Organic Chemistry," Holden-Day, London, 1964, pp 47-49.

(45) J. L. Beton, T. G. Halsall, E. R. H. Jones, and P. C. Phillips, *J. Chem. Soc,* 753 (1957), and ref therein.

(46) H. B. Henbest and W. R. Jackson, *J. Chem. Soc,* 954 (1962), and ref therein.

⁽³⁸⁾ R. Deghenghi and R. Gaudry, *Can. J. Chem.,* 40, 818 (1962).

⁽³⁹⁾ The formation of $\Delta^{3.5}$ -3-chlorosteroids from Δ^{4} -3-ketones in the presence of other chlorinating agents, such as oxalyl chloride³⁸ and $C_6H_5COCl, ^{40}$ has been reported.

⁽⁴⁰⁾ L. Ruzicka and W. H. Fischer, *Helv. Chim. Acta,* 19, 806, 1371 (1936). (41) J. De Graw and L. Goodman, J. Org. Chem., **27**, 1395, 1728 (1962); Z. B. Papanastassiou, R. J. Bruni, and E. White, J. Med. Chem., 10, 701 (1967).

⁽⁴²⁾ C. A. Bunton, "N'ucleophiiic Substitution at a Saturated Carbon," Elsevier, London, 1963, p 101.

⁽⁴³⁾ The C-3 inversion observed on chlorination of 22 under conds normally leading to retention of configuration can be rationalized if the C-17 amino functions of 22 and 23 are sufficiently basic to cause $S_{\rm N2}$ substitution to replace SNi displacement as the dominant mechanistic pathway.⁴²

(1) When functional groups other than $N(CH_2CH_2+)$ $OH₂$ are absent, POCl₃ is the preferred chlorinating agent. Highly purified $S OCl₂$ in pure CHCl₃ is also satisfactory. These 2 reagents should also be suitable when an isolated or nonconjugated double bond is present.

(2) When ketone or α,β -unsaturated ketone functions are present, MsCl in pyridine is the reagent of choice. POCI3 may convert an enone into a chlorodiene system; $S OCl₂$ is not recommended owing to the extensive decomposition which may well occur.

(3) Mustard precursors containing primary or secondary OH functions may undergo chlorination with inversion with the $S OCl₂$ reagent, and elimination is a possibility when POCl₃ is used. Some preliminary data on tertiary alcohols¹³ indicate that elimination will occur with SOC_{2} , POCl₃, or MsCl.

(4) AICI3 and triphenylphosphine or phosphorus trisdimethylamide in CC1- were not effective as chlorinating agents.

Biological Data.—Since it was hoped that the androgen-like steroid carriers of the mustards prepared would confer breast tissue specificity properties on the compounds, androgen regressable, DMBA-induced mammary tumors in female Sprague-Dawley rats were selected for the initial evaluation of three representative mustards 1, 20, and 24.

None of the compounds was lethal nor caused any obvious distress when injected sc into mice as a suspension in 2% gelatin at a level of 50 mg/kg. The LD_{50} of 1 was \sim 100 mg/kg in these toxicity tests but 20 and 24 were well tolerated even at this dose level.

In the preliminary survey carried out, groups of 3 rats bearing well-developed and progressively growing breast tumors were injected sc with mustards 1, 20, and **24** as 2% gelatin suspensions 3 times weekly for $3-4$ weeks. A control group of 7 rats was used. The doses were gradually increased during this period from 30 to 40 mg/kg for 1, 40 to 80 mg/kg for 20, and 40 to 100 nig/kg for 24. Disappointingly, the Δ^4 -3-ketone 1 and the 3-chloro- $\Delta^{3,5}$ -diene 20 were found to be totally without effect on the rate of growth or proliferation of the tumors and the Δ^2 -mustard 24 induced only a moderate regression (estimated from 3-dimensional measurements of all tumors with calipers) in the size of $2/3$ tumors. At the end of the experiment the rats were sacrificed and portions of the tumors were examined histologically. Xo evidence of tumor destruction attributable to the treatments was detectable although the 2 tumors which decreased in size during administration of 24 showed areas of regression comparable with those seen after ovariectomy or androgen treatment.

In view of the total absence of any evidence of cytotoxic activity for any of the mustards 1, 20, and 24, more detailed studies on larger groups of rats were not considered justified.

Overall Evaluation of the Potential of Nitrogen Mustards.—The discouraging nature of the above results prompted us to reevaluate the total literature on steroid mustards in an attempt to ascertain whether or not the effort required to prepare such compounds was justified from an anticancer point of view. The data available showed clearly that (a) with very few exceptions the attachment of $N(CH_2CH_2Cl)_2$ directly to the steroid nucleus was relatively ineffective, (b) aromatic mustard moieties are better than aliphatic, presumably since they are less reactive and thus are less likely to be intercepted before reaching the target site, (c) appropriate steroid structures *are* effective carriers, (d) if the mustard-steroid link is readily cleavable by hydrolysis or other possible *in vivo* processes, the chance of activity is increased, and (e) although hormone-like carriers are not essential they do impart increased selectivity of action.

However, most of the steroid-mustards evaluated have proved inactive and in general it must be concluded that they have demonstrated very little potential from the clinical point of view. The exceptions to this general observation are the very promising activities observed for a series of steroid ester-aromatic mustard compounds studied first by Degteva and Larionov⁴⁷ and then more extensively by Wall and his coworkers.¹¹ The results of the latter authors are particularly encouraging and it is largely on the basis of their work that any optimism for eventual clinical applications of steroid-mustards rests.

Experimental Section

Apparatus and **Materials.**—Mp's were detd 011 a Fisher-Johns block and are cor. Ir spectra were recorded on a Perkin-Elmer 237B or a Perkin-Elmer 257 spectrophotometer, and uv spectra were measured on a Unicam SP 800A instrument. Pmr spectra were detd in CDCI3 with TMS as the internal standard on a Varian A-60 or HA-100 instrument. Glc anals were performed on an F and M 400 biomedical unit equipped with 3.8% SE 30 on Diatoport S, *2%* XE-60 on Chromosorb G, and 1% QF-1 on Chromosorb G columns. Column chromatographic sepns were effected with Fisher Scientific Co. neutral Al₂O₃ which had been deactivated by shaking with 2% by wt of H_2O or with Fisher Scientific Co. Florisil. The and pic were performed on silica gel G and the compds were visualized with I_2 vapor.

All solvents were redistd before use. CHCl₃ was shaken with half its vol of H_2O , dried over anhyd $CaCl₂$ for 24 hr, and then distd. SOCl2 was shaken with one-sixth its vol of triphenylphosphite²² and was then fractionally distd. The process was repeated, and the colorless liq obtd was stored at -20° in the dark. POCl₃ was distd and stored at -20° in the dark.

Unless otherwise stated, all compds described herein were purified until they were at least homogeneous to tic and where applicable, glc anal.

Spectral data were as expected for all compds and only where the data are of special diagnostic value²³ have details been reported.

17 β **-Amino-5** α **-androstane** (8).—5 α -Androstan-17 β -ol (5), mp $168-169$ ° (lit.⁴⁸ mp 165.5-166.5°), was obtd by redn of 17 β hydroxyandrost-4-en-3-one (testosterone)^{48,49} and its oxidn with Jones' reagent in freshly distd Me₂CO gave 5α -androstan-17-one (6), mp $124.5-125^{\circ}$ (lit.⁵⁰ mp $119-121^{\circ}$), in 82% yield. Subsequent treatment of 6 with $NH₂OH-HCl$ in aq EtOH-pyridine soln afforded 17-hydroxyimino-5 β -androstane (7) (97% yield), mp 175-177° (lit.⁵¹ mp 173-176°).

A soln of the above oxime 7 (0.4 g, 1.4 mmoles) in abs EtOH (20 ml) was heated under reflux while freshly cut Na (2.4 g, 0.1 g-atom) was added in small portions during 2 hr.¹⁶ Heating

(47) S. A. Degteva and L. F. Larionov, *Vop. Onkol.,* 12, 51 (1966), and ref therein.

(48) W. V. Ruyle, A. E. Erickson, A. Lovell, and E. M. Chamberlin, *J. Org. Chew...* 25, 1260 (1960). (49) F. L. Weisenborn and H. E. Applegate, *J. Amer. Chem. Soc,* 81,

1960(1959). (50) C. W. Shoppee, *R.* H. Jenkins, and G. H. Summers, *J. Chem. Soc,* 3048 (1958).

(51) C. W. Shoppee and J. C. P. Sly, *ibid..* 345 (1959).

was continued for a further 2 hr, and the soln was then dild carefully with warm (60°) H_2O (60 ml) and kept overnight at 20°. The resulting pot was filtered, washed with H_2O , and re-The resulting ppt was filtered, washed with H_2O , and recrystd from Me₂CO to give 0.36 g (86%) of 178-amino-5 α -androstane (8), mp $131-134$ ° (lit.⁵¹ mp $138-141$ °).

 17β -Bis(2-hydr**oxyethyl)amino-5** α **-androstane** (9).—A soln of 17β -androstane (8, 200 mg, 0.73 mmole) in the min amt of CHCl₃ *(ca.* 10 ml) was added rapidly with stirring to a cold (0°) soln of ethylene oxide (4 ml, 81 mmoles) in MeOH (8 ml). The reaction flask was then tightly stoppered and stirring was continued for a further 1 hr at 0°. After keeping for a further 2 days at 20° the reaction mixt was refluxed for 8 hr using an $Me₂CO-CO₂$ cooling system to condense the ethylene oxide. The solvent was then removed by rotary evapn, and the residue obtained was recrystd from MeOH to yield $\bar{9}$ as colorless plates (230 mg, 87%): mp 151-153°; pmr *b* 2.53-3.02 (m, 7, CH and NCH₂CH₂OH)
and 3.64 ppm ("t," 4, *J* = 6.0 Hz, NCH₂CH₂OH).⁵² *Anal.* $(C_{23}H_{41}NO_2)$ C, H, N.

17)3-Bis(2-chloroethyl)amino-5a-androstane (3). (a) With SOCl₂ as Chlorinating Agent.—To a stirred soln of 17β -bis(2hydroxyethyl)amino- 5α -androstane (9, 100 mg, 0.28 mmole) in CHCI3 (5 ml) cooled in an ice bath was added slowly a soln of $S₁₂$ (0.6 ml, 8.3 mmoles) in CHCl₃ (2.5 ml). Stirring at 0° was continued for 1 hr, and the mixt was then gradually warmed up to 00° and maintained at that temp overnight. After cooling to 5°, the reaction mixt was poured into cold (5°) H_zO (25 ml) and washed with cold (5°) satd aq NaHCO₃ soln (1 \times 10 ml). The aq layer was extd with CHCl₃ (2 \times 10 ml), and the combined CHCI₃ exts were washed with cold (5°) H₂O (2 \times 10 ml) and then dried (MgS04). On removal of the solvent the mustard was obtained as a yellow solid (55 mg, 50%). Recrystn of a sample from Me_2CO yielded 3 as a cryst powder: mp 82-82.5°; pmr 6 2.94 ("f," 4, *J =* 8.0 Hz, NCH,CH,C1) and 3.48 ppm ("t,'' $\mathcal{A}, \mathcal{J} = 8.0$ Hz, NCH₂CH₂Cl); mass spectrum (70 eV) m/e (rel intensity) 399 (57), 401 (38), 403 (7).

(b) With POCl₂ as Chlorinating Agent.—A soln of the diol 9 (150 mg, 0.41 mmole) in POCl₃ (5 ml) was heated at $95-100^{\circ}$ for 1 hr. The excess POCl₃ was then removed by vacuum distn, and the colorless oil which resulted was taken up in $\mathrm{C}_6\mathrm{H}_6$ (20 ml). The C6H6 was then removed by vacuum distn. This latter cycle of operations was repeated until the odor of POCls could no longer be detected in the reaction flask. The resulting gum was redissolved in C_6H_6 (20 ml), and the soln was washed with cold satd NaHCO₃ soln $(1 \times 10 \text{ ml})$ and dried (MgSO₄). Evapn of the solvent gave 3 as a pale yellow solid (91 mg, 55%). The mustard was dissolved in the min amt of anhyd $Et₂O$, and HCl was bubbled through the soln. The hydrochloride was obtained as a fine powder (85 mg), mp $151-153^{\circ}.55$ *Anal.* $(C_{23}H_{40}Cl_3N)$ 0, H, N, CI.

 17α -Azido-5 α -androstane (11). To a soln of 5 α -androstane 17β -tolnene- p -sulfonate 54 (0.50 g, 1.4 mmoles) in dry N -methyl-2pyrrolidone (10 ml) under N_2 was added cryst NaN_3 (0.43 g, 6.6 mmoles).¹⁸ While still under N_2 the mixt was heated at 150[°] for 5 hr and was then cooled and poured into H_2O (60 ml). The aq soln was extd with Et_2O (4 \times 30 ml), and the Et_2O exts were then washed with H_2O and dried (MgSO4). Evapn afforded a yellow solid which was recrystd from MeOH to give **11** as plates $(245 \text{ mg}, 80\%)$, mp 61.8-62.5°. Anal. $(C_{19}H_{31}N_3)$ C, H, N.

17a-Amino-5a-androstane (12).—A soln of 17a-azido-5aandrostane (11, 100 mg, 0.34 mmole) in anhyd Et $_2$ O (4.5 ml) was added slowly with stirring to a slurry of LAH (100 mg, 2.46 mmoles) in anhyd Et₂O (10 ml).¹⁸ After the mixt had been heated under reflux for 3 hr moist ether was added until gas evoln ceased. H₂O (10 ml) and 5% NaOH soln (10 ml) were then added, and the Et_2O layer was removed by decantation.

(52) The *€!{•* adjacent to N and those adjacent to O or CI in 2-hydroxyethylamines and 2-cbloroethylamines. respectiyely, do not constitute a true A_2X_2 system. Hence, distorted and structured triplets and other more complex absorptions are often observed for these protons as the system varies from an A_2X_2 to an A_2B_2 case. Although the appearance of the resonance patterns is thus directly related to the basicity of the X atom in these molecules, the patterns are always symmetrical about their midpoints. In the spectra of the derivs prepd during this investigation distortion of the $CH₂$ triplets is not appreciable in most cases and these patterns have been described as triplets (designated as "t" if not *true* triplets) and the apparent coupling constants quoted as if the patterns observed were truly of the A_2X_2 type.

(53) Neutralization of the hydrochloride with aq NaHGOa regenerated the parent mustard and repeated cycling through the hydrochloride formation-neutralization procedure finally afforded an anal, sample.

(54) J. Flks and C. W. Shoppee, *J. Chem. Soc.*, 241 (1953).

The remaining aq mixt was stirred further to effect soln of the Al salts and then reextd with $Et_2O(3 \times 20 \text{ ml})$. The combined Et₂O exts were dried (MgSO₄) and evapd to give the 17 α -amine **12** as a clear, colorless gum (77 mg, 84%) which solidified upon standing.

17a-Bis(2-hydroxyethyl)amino-5a-androstane (13) was prepd from 17α -amino-5 α -androstane (12, 1.0 g, 3.6 mmoles) and ethylene oxide (18 ml, 0.36 mole) according to the method described above for 17β -bis(2-hydroxyethyl)amino-5 α -androstane (9). The crude product obtained after work-up was recrystd from hexane to give the diol 13 as plates (1.15 g, 87%): mp 148–149°; pmr δ 2.81 ("t," 4, superimposed on C-17 H signal, $\dot{J} = 5.9$ Hz. NCH₂CH₂OH), and 3.58 ppm ("t," 4, $J = 5.9$ Hz, NCH₂CH₂OH). *Anal.* ($C_{23}H_{41}NO_2$) C, H, \tilde{N} .

 17α -Bis(2-chloroethyl)amino-5 α -androstane (4). (a) With **SOCl**: as Chlorinating Agent. -17α -Bis(2-hydroxyethyl)amino- 5α -androstane (13, 100 mg, 0.38 mmole), dissolved in CHCl₃ (5 ml) , and $\text{S} \cdot \text{OL}_{2}$ $(0.6 \text{ ml}, 8.3 \text{ mmoles})$ in CHCl₃ (2.5 ml) were treated and worked-up as described for the 17β -mustard 3. The resulting brown oil was dissolved in CHCl_a, treated with Norite, and filtered. Removal of the solvent gave 4 as a white solid (52 mg, 47%.): mp 163-163.5°; pmr *S* 2.93 (structured "t, " 4, $J = S$ Hz, $NCH₂CH₂Cl₁Cl₂$ and 3.42 ppm (structured "t," 4, J $=$ 8 Hz, NCH₂CH₂Cl); mass spectrum (70 eV) m/e (rel intensity) 399 (57), 401 (32), 403 (7).-

(b) With POCl₃ as Chlorinating Agent.—P()Cl₃ (5 ml) and 17α -bis(2-hydroxyethyl)amino-5 α -androstane (13, 150 mg, 0.41 mmole) were treated and worked-up as described above for 3. Compd 4 was obtd as a white solid $(83 \text{ mg}, 50\%)$ and was converted to the hydrochloride (70 mg), mp 154-155°, as described previously. $Anal. \quad \{C_{23}H_{40}Cl_3N\}$, C, H, N; Cl calcd, 24.34; found, 23.47.⁵³

17 β **-Morpholino-5** α **-androstane (14).**—A mixt of 5α -androstan-17-one (1 g, 3.6 mmoles), $HCO₂H$ (1 ml, 30 mmoles), and morpholiue (3 ml, 34 mmoles) was heated in a sealed tube at 170- 180° for 15 hr and was then poured into H₂O and filtered. Recrystn from Me₂CO gave 14 as plates (0.82 g, 65%), mp 154- 155° . *Anal.* $(C_{23}H_{39}NO)$ C, H, N.

3,3'-Ethylenedioxy-17-hydroxyiminoandrost-5-ene. --- 17ff-Hydroxyandrost-4-en-3-one (testosterone) was reacted with $\text{HO}(\text{CH}_2)_2\text{OH}^{55}$ to give the hydroxyketal 15, mp 183-184[°] (lit.⁵⁵) mp 182–184°), in 46% yield. Oxidn of 15 was effected with CrO₃ in pyridine²⁹ to give 80% of 3,3'-ethylenedioxyandrost-5-
en-17-one, mp 196–197° (lit.⁵⁵ mp 197–198°). The latter oxoketal (500 mg, 15 mmoles) was dissolved in pyridine (5 ml), and a soln of $NH₂OH-HCl$ (440 mg, 70 mmoles) in 90% aq EtOH (5 ml) was added. The mixt was refluxed for 5 hr and was then poured into H₂O (100 ml) and extd with CHCl₃ (3 \times 50 ml). The dried $(MgSO_4)$ CHCl₃ exts were evapd, and the residue was recrystd from MeOH contg a trace of pyridine to give 313 mg of 3,3'-ethylenedioxv-17-hvdroxyiminoandrost-5-ene as needles, mp $245-246^\circ$. *Anal.* (C₂₁H₃₁NO₃), C, H, N.

 17β -Amino-3,3'-ethylenedioxyandrost-5-ene. 3,3'-Ethylenedioxy-17-hydroxyiminoandrost-5-ene (500 mg, 14.5 mmoles) was reduced with $\operatorname{Na}(3 g)$ in EtOH as described above in the prepn of 17β -amino-5 α -androstane (8). 17β -Amino-3,3'-ethylenedioxyandrost-5-ene was obtained as prisms (269 mg, 56%) from C_6H_6 -hexane, mp 183-184[°]. *Anal.* (C₂,H₃₃N_{O2}) C, H, N.

17(3-Bis(2-hydroxyethyl)amino-3,3'-ethylenedioxyandrost-5 ene (16).—17⁸-Amino-3,3'-ethylenedioxyandrost-5-ene (3 g, 0.09 mole) in the min vol of CHCl₃ and ethylene oxide (27 ml.) 0.54 mole) were allowed to react using the procedure described for the conversion of 8 to 9. The ketalized diol 16 recrystd from MeOH contg a trace of pyridine as lustrous plates $(2.97 \text{ g}, 72\%)$: mp 188-189°; pmr *S* 2.S3 ("t", 4, *J =* 5 Hz, XCH2CH2OH) and 3.68 ("t," 4, $\hat{J} = 5$ Hz, NCH₂CH₂OH). *Anal.* (C₂;H₄₁NO₄) C, H, N.

17/3-Bis(2-hydroxyethyl)aminoandrost-4-en-3-one (17).- The above ketal 16 (105 mg, 2.5 mmoles) and hydrated TsOH (70 mg) were kept in Me₂CO-CHCl₃ (1:1, 12 ml) soln for 12 hr at 20°. The soln was then poured into satd aq XaHCOs (50 ml), and the mixt was extd with CHCl₃ (5×20 ml). The combined CHCI₃ exts were dried $(MgSO₄)$ and evapd to give quant the A 4 -3-ketone **17** which on recrystn from cyclohexane afforded needles (68 mg): mp $127-128.5^{\circ}$; pmr δ 2.82 "t," $4, J = 5$ Hz, NCH_2CH_2OH) and 3.66 ("t," 4, $J = 5$ Hz, NCH_2CH_2OH). $\it{Anal.}$ $(C_{23}H_{37}NO_{3}) C, H, N.$

⁽⁵⁵⁾ H. J. Dauben, B. Loken, and H. J. Ringold, J. Amer. Chem. Soc., 76, 1359 (195-4).

17/3-Bis(2-chloroethyl)arhinOandrost-4-en-3-one (1).—To a soln of 17β -bis(2-hydroxyethyl)aminoandrost-4-en-3-one (17, 170 mg, 0.45 mmole) in pyridine (1 ml) was added MsCl (0.08 ml, 1.05 mmoles) during 2 min using a cold $H₂O$ bath to prevent the temp of the reaction mixt from rising above 90°. The resulting brown soln was heated at 80-100° for a further 20 min and, after cooling to 10° , it was dild with $H_2O(3 \text{ ml})$. The aq supernatant was decanted from the pptd gum and was extd with CHCls $(3 \times 10 \text{ ml})$. The combined exts were then added to the residual gummy material, and the resulting soln was dried $(MgSO₄)$. Evapn of the solvent and pic on silica gel of the residue yielded the mustard 1 as a colorless gum⁵⁶ $(47 \text{ mg}, 25\%)$; pmr δ 2.96 $("t," 4, J = 6.0$ Hz, NCH₂CH₂Cl) and 3.50 $("t," 4, J = 6.0$ Hz, $NCH₂CH₂Cl$). An Et₂O soln of the product was treated with HCl and the hydrochloride was obtained as a fine white powder⁵⁵ (35 m/s) : mp $123-124$ °; mass spectrum (70 eV) m/e (rel intens- itv) 411 (57), 413 (37), 415 (7).

3-Chloro-173-bis(2-hydroxyethyl)aminoandrosta-3,5-diene (20) from the Reaction of 17 with POC_3 . POC_3 (4 ml) and 17 (200 mg, 0.53 mmole) were refluxed for 30 min, and the reaction mixt was then worked-up as for the previous POCl₃ reactions $(e.g., 9 \rightarrow 3)$. The yellow, oily product obtained was recrystd from $Me₂CO$ to give 20 as a yellow powder⁵⁶ (99 mg, 43%): mp 145-147°; pmr δ 2.98 ("t," 4, $J = 6.5$ Hz, NCH₂CH₂Cl) and 3.52 ("t," 4 , $J = 6.5$ Hz, NCH₂CH₂Cl); uv max (MeOH) 242 (log ϵ 4.4), 236 (s) and 250 nm (s). The 3-chloro mustard 20 was converted to its hydrochloride,⁵⁵ mp $173-174.5^\circ$, as described for 3.

3,3'-Ethylenedioxyandrost-5-ene 17 β -Toluene-p-sulfonate. $3,3'-Eth$ ylenedioxyandrost-5-en-17 β -ol⁵⁵ (15, 1.1 g, 30 mmoles) was dissolved in dry pyridine (5 ml), and TsCl (1.06 g, 60 mmoles) was added at 20° with stirring. The reaction mixt was kept at 20° for 2 days after which time satd aq NaHCO₃ (50 ml) was added, and the mixt extd with CHCl₃ (2 \times 25 ml). The CHCl₃ exts were dried $(MgSO₄)$ and evapd, and the resulting solid was recrystd from MeOH to give the product as needles (1.2 g, 80%), mp $154-155^{\circ}$. *Anal.* $(\text{C}_{28}H_{38}\text{O}_5\text{S})$ C, H.

 17α -Azido-3,3'-ethylenedioxyandrost-5-ene.—The above tosylate (15 g, 30 mmoles) and $\text{Na}N_3$ (13.8 g, 210 mmoles) were allowed to react in dry N-methyl-2-pyrrolidone as described for the conversion of 10 into 11. The 17α -azido-3,3'-ethylenedioxyandrost-5-ene obtained (10.8 g, quant) was recrystd from MeOH contg a trace of pyridine as prisms $(7.5 g)$, mp $157-158^\circ$. *Anal.* $(C_{21}\overline{H}_{31}N_3O_2)$ C, \overline{H} , N.

17a-Amino-3,3'-ethylenedioxyandrost-5-ene.—A soln of the above 17α -azide (10.8 g, 30 mmoles) in dry Et_2O (450 ml) was reduced with a slurry of LAH (10.7 g, 280 mmoles) in dry Et_2O (1 1.). The procedure used was as described for the prepn of 17α -amino-5-androstane (12) and 17α -amino-3,3'-ethylenedioxyandrost-5-ene, prisms from hexane, mp 143-148°, was isolated in 45% yield $(4.6 g)$.

The amine itself was rather unstable and was further characterized as the mono toluene-p-sulfonamide deriv (obtained by treatment with TsCl in pyridine), which recrystd from MeOH contg a trace of pyridine as needles, mp $230-231^\circ$. Anal. (C₂₈- $H_{39}NO_4S$ C, H, N, S.

17a-Bis(2-hydroxy ethyl)amino-3,3' -ethy lenedioxy androst-5 ene (18).—The general procedure described for the alkylation of 8 was employed using the above 17α -amino- Δ^{5} -3-ketal (400 mg, 1.2 mmoles) and ethylene oxide (6 ml, 120 mmoles). Compd 18 was produced and was recrystd from hexane contg a trace of pyridine to give needles (257 mg, 52%): mp 140.5-141°; pmr δ 2.82 ("t," 4, $J = 5$ Hz, NCH₂CH₂OH) and 3.63 ("t," 4, $J =$ 5 Hz, NCH₂CH₂OH). Anal. (C₂₅H₄₁NO₄) C, H, N.

17a-Bis(2-hydroxyethyl)aminoandrost-4-en-3-one (19),—The protecting ketal group of 18 (105 mg, 2.5 mmoles) was removed as described for the 17β analog 16. Compd 19, prisms from hexane, mp 129-131°, was isolated in 56% yield (53 mg) ;⁵⁶ pmr δ 2.84 ("t," 4, $J = 5.5$ Hz, NCH₂CH₂OH) and 3.62 ("t," 4, $J = 5.5$ Hz, NCH₂CH₂OH).

17a-Bis(2-chloroethyl)aminoandrost-4-en-3-one (2).—17a-Bis(2-hydroxyethyl)aminoandrost-4-en-3-one (19, 100 mg, 0.27 mmole) and MsCl (0.05 ml, 0.66 mmole) were allowed to react as described above for the prepn of 1 to give 24 mg (21%) of the 17a-mustard 2; pmr *6* 2.72-3.17 (m, 4, NCH2CH2C1) and 3.46 (structured "t," 4 , $J = 7$ Hz, NCH₂CH₂Cl); mass spectrum (70) eV) *m/e* (rel intensity) 411 (57), 413 (40), 415 (10). The small amt of material available precluded further purification of this somewhat unstable mustard.⁵⁶

 17β -Bis(2-hydroxyethyl)amino- 5α -androstan- 3β -ol (22).—17 β -Amino-5 α -androstan-3 β -ol (21, 500 mg, 1.7 mmoles), mp 157-159° (lit.¹⁸ mp 158-160°), was prepd by the method of Pettit and coworkers¹⁶ and was treated with ethylene oxide (8.5 ml, 170 mmoles) as described in detail for 8. The diol 22 obtd was recrystd from a large vol of MeOH to give needles $(416 \text{ mg}, 65\%)$. mp 195-196°. The insoly of 22 precluded the recording of a routine pmr spectrum. Anal. $(C_{23}H_4NO_3)$ C, H, N.

 17β -Bis(2-chloroethyl)amino-3_{α -chloro-5- α -androstane (23)} **front** the **Reaction** of 22 **with SOCI2.—**Treatment of the triol 22 $(250 \text{ mg}, 0.65 \text{ mmole})$ with SOC_2 $(2 \text{ ml}, 28 \text{ mmoles})$ in the usual way (c). $9 \rightarrow 3$) gave the 3 α -chloro mustard 23, plates (70 mg, 25%) from Me₂CO: mp 122.5-124.5°; pmr δ 2.91 ("t," 4, $J =$ 7 Hz, NCH₂CH₂Cl) and 3.46 ("t," 4, $J = 7$ Hz, NCH₂CH₂Cl). $Anal.$ $(C_{23}H_{38}Cl_3N)$ C, H, Cl, N.

17/3-Bis(2-chloroethyl)amino-5a-androst-2-ene (24) from the Reaction of **22 with POCl3.—**17/3-Bis(2-hydroxyethyl)amino-5aandrostan-3 β -ol (300 mg, 0.79 mmole) was treated with $P OCl₃$ (15 ml) as described for $9 \rightarrow 3$ and 17β -bis(2-chloroethyl)aminoandrost-2-ene was obtained as a yellow oil⁵⁶ (170 mg, 54%): pmr δ 3.02 ("t," 4, $J = 6.1$ Hz, NCH₂CH₂Cl) and 3.52 ("t," $J = 6$ Hz, NCH₂CH₂Cl). The oil was dissolved in anhyd $Et₂O$ and HCl was bubbled through the soln to give the hydrochloride as a fine powder (140 mg) : mp $146-147.5^{\circ}$; mass spectrum (70 eV) m/e (rel intensity) $397(57)$, $399(39)$, $401(7)$.

Acknowledgment.—The generous support of the National Cancer Institute of Canada and the award (to J. D. L.) of an NRCC scholarship are gratefully acknowledged. We are greatly indebted to Dr. J. W. Jull, Cancer Research Centre, University of British Columbia, for carrying out and interpreting the biological assays and to Mr. G. Koves for his skilled technical assistance.

⁽⁵⁶⁾ Great difficulty was encountered in the purification of several of the N mustards prepd during this study and acceptable elemental anal, data were not obtainable for 17β -bis(2-chloroethyl)aminoandrost-4-en-3-one (1), $17a-bis(2-chloroethv)$ aminoandrost-4-en-3-one (2), 3-chloro-17 β -bis(2chloroethyl)aminoandrosta-3,5-diene (20), and 17 β -bis(2-chloroethyl)aminoandrost-2-ene (24). The purification procedures surveyed included column chromatography on Al2Os and Florisil, ple on silica and recrystn of the mustards and their HC1 salts from a variety of org solvents. Furthermore, the mustards were found to decomp on XE-60, QF-1, and SE-30 columns during gle analysis. In this context, it should be noted that Peck, et al.,⁶⁷ reported that analytical laboratories encounter great difficulty in total halogen analyses on N mustards and their hydrochlorides due to the lability of both types of Cl atoms. The 17α -mustard precursor 19 also proved too unstable for a satisfactory elemental anal, to be obtd.

⁽⁵⁷⁾ R. M. Peck, R. K. Preston, and H. J. Creech, *J. Amet. Chum. Soc,* 76, 3984 (1959).